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Abstract

In thiswork, we investigate the vibrations of embankments by the singular Sturm-Liouville equa-
tions. At first, we create the mathematical form of the vibrations by the shear beam (SB) model
(see [21]) and transform this given form to the Sturm-Liouville form with a singularity. Fi-
nally, we discuss the numerical solution to the considered problemusing the variational iteration
method.
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1 Introduction

The earth dams that have been built by compact soils are vulnerable in displacements. The
scientists can find the steady of embankments by studding and analyzing of their seismic re-
sponse. These investigations and their findings can help us to know the resistance of dams dur-
ing an earthquake. In the making of the mathematical model, the formulation is derived from a
two-dimensional structure within a fixed domain. The obtained formulae are applicable in vari-
ous places. The vibrations of embankments usually led to differential equations with boundary
conditions. In [7, 21], these problems were studied without using the Sturm-Liouville problems
which the specific shear strain of the soil in the body of a dam has been taken. We used this
shear strain and created the mathematical model of the problem by Sturm-Liouville equations
(see [18, 19]). In [18], taking the shear stress τyz = G∂u

∂z , we gave the following differential equa-
tion for α = π

(
H−

m
2 +1 − h−m

2 +1
)−1

,

d2y

ds2
+

λ2 − m2−4
16 α

2
1−m

2(
s+ αh−

m
2 +1

) 2
1−m

2

 y = 0, 0 ≤ s ≤ π,

wherem is a parameter in interval [0, 1]. The scholars are focused on the shear stress-strain of the
soil in theses problems. In this article, we take a new type of the shear strain that gives a new
potential in Sturm-Liouville equations the so-called potential with singularities. Applying the
shear beam (SB) model, we will make a partial differential equation and the separation variant
transforms it to the ordinary differential equation. Then by a transformation, we get a suitable
Sturm-Liouville equation of this problem. We will take the singular Sturm-Liouville equations
in the survey of vibrations of dams which this technique is a new method in this field. In the
other hand, the Sturm-Liouville problems were studied in many works in the last decades (see
[2, 3, 9, 10, 11, 16, 17, 20, 22]).

There exist various methods to solve the differential equation such as variational iteration
method, optimal perturbation iteration method, perturbation iteration method, Taylor collocation
method, etc (see [4, 5, 6, 8]). The variational iteration method which is an appropriate analytical
method to solve the linear or nonlinear problems was taken by researchers to survey the Sturm-
Liouville equations (see [1]). This method was introduced by He and many scholars have used it
to get the solution of the differential equations. For example, Bildik and Deniz have applied this
method to systems of delay differential equations with initial conditions (see [6]). To complete
our mathematical analysis, we will take the variational iteration method for the singular Sturm-
Liouville equation in our work. By studding this article, we can find that the used technique is an
effective way in the investigation of various classes of such applied problems.

Taking the physical rules, we can outline a following form for the vibrations of embankments
with the shear stress τyz = G

(
∂u
∂z + u

z−H

)
as

1

z

d

dz

(
z

(
dϑ

dz
+

ϑ

z −H

))
= −λϑ, h ≤ z < H,

(∗)

U(ϑ) := ϑ′(h) +
1

h−H
ϑ(h) = 0, V (ϑ) := ϑ(H) = 0,

wherein λ is a spectral parameter. Also h and H are real constants.
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The rest of this paper is organized as follows. In Section 2, we present the mathematical form
of the problem and then we transform this model to a suitable Sturm-Liouville equation. Section
3 contains some numerical statements of the considered problem that we have applied the vari-
ational iteration method for the singular differential equation with the boundary condition. The
conclusion is given in Section 4.

2 Formulation of the Model

This section contains some corollaries which clarify the main goal of this article. We establish
a mathematical form of vibrations of dams by taking the shear beam technique.

The soil elements in dams have a volume

V (z) = b(z)Ldz, h ≤ z < H,

where b(z) = B
H z. Therefore

V (z) =
BL

H
zdz. (1)

Let FH be a shear force on the horizontal surface that a vibration will exert. We can write

FH = τyzAxy(z),

where τyz and Axy(z) are the shear stress and the area in the xy-plane, respectively. Assume that
G = Gb be the soil average shear modulus and u(z; t) be the displacement at z. Define

Axy(z) = b(z)L,→ Axy(z) =
B

H
zL,

τyz = G

(
∂u

∂z
+

u

z −H

)
.

We will have

dFH = −BL
H

∂(zτyz)

∂z
dz.

Therefore

dFH = −BLGb
H

∂

∂z

(
z

(
∂u

∂z
+

u

z −H

))
dz. (2)

Besides, the sum total of inertial forces for elements is

I = ρsV (z)ü,

wherein ρs := soil mass density in dams, and ü := acceleration. Using (1), we get

I = ρs
BL

H
zdz

∂2u

∂t2
. (3)

The static of the elements is satisfied when the net force dFH equals to the inertia forces I . These
conclude that

dFH + I = 0. (4)
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Substituting (2) and (3) in (4), the motion equation

BLGb
H

∂

∂z

(
z

(
∂u

∂z
+

u

z −H

))
dz = ρs

BL

H
zdz

∂2u

∂t2
,

is achieved. By simplifying this equation, we have the following PDE

1

z

∂

∂z

(
z

(
∂u

∂z
+

u

z −H

))
=
ρs
Gb

∂2u

∂t2
. (5)

Then applying (5) and considering C2
b = ρs

Gb
, the equation

1

z

∂

∂z

(
z

(
∂u

∂z
+

u

z −H

))
= C2

b

∂2u

∂t2
, (6)

will be given. If we consider

u(z; t) = ϑ(z)θ(t), (7)

and replace in (6), the ordinary differential equation of this problem is given as follows

1

z

d

dz

(
z

(
dϑ

dz
+

ϑ

z −H

))
= −λϑ, (8)

where λ is a spectral parameter. Therefore we can write

d2ϑ

dz2
+

(
1

z
+

1

z −H

)
dϑ

dz
+

(
1

z(z −H)
− 1

(z −H)2

)
ϑ = −λϑ. (9)

Here, the boundary conditions are in two cases:
(1) : Since the embankment has stuck in the base, we have u(H; t) = 0,
(2) : Since there is not any stress in the top surface, we have τyz(h; t) = 0.

Corollary 1. We can consider the following BVP(L) with τyz = G
(
∂u
∂z + u

z−H

)
,

d2ϑ

dz2
+

(
1

z
+

1

z −H

)
dϑ

dz
+

(
1

z(z −H)
− 1

(z −H)2

)
ϑ = −λϑ, h ≤ z < H,

(10)

U(ϑ) := ϑ′(h) +
1

h−H
ϑ(h) = 0, V (ϑ) := ϑ(H) = 0. (11)

Now we transform (10) to the Sturm-Liouville equation. These equations were studied in
[3, 9, 15, 16, 23]. For this purpose, we take the following transformation [12].

Lemma 2. The following transformation

y = exp

(
1

2

∫ z

a

p(s)ds

)
ϑ, (12)

transforms the ODE

ϑ′′(z) + p(z)ϑ′(z) + q(z)ϑ(z) = 0, z ∈ [a, b], (13)

to
d2y

dz2
+

(
q(z)− 1

4
p2(z)− 1

2
p′(z)

)
y = 0. (14)
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Proof. Considering (12), we have

ϑ(z) = exp

(
−1

2

∫ z

a

p(s)ds

)
y(z).

The first and second order derivatives of ϑ can be given

ϑ′(z) = exp

(
−1

2

∫ z

a

p(s)ds

)(
y′(z)− 1

2
p(z)y(z)

)
,

ϑ′′(z) = exp

(
−1

2

∫ z

a

p(s)ds

)(
y′′(z)− p(z)y′(z) +

(
1

4
p2(z)− 1

2
p′(z)

)
y(z)

)
.

Now substituting these derivatives in (13), we get(
y′′(z)− p(z)y′(z) +

(
1

4
p2(z)− 1

2
p′(z)

)
y(z)

)
exp

(
−1

2

∫ z

a

p(s)ds

)
+p(z)

(
y′(z)− 1

2
p(z)y(z)

)
exp

(
−1

2

∫ z

a

p(s)ds

)
+ q(z)y(z) exp

(
−1

2

∫ z

a

p(s)ds

)
= 0.

Therefore

y′′(z)− p(z)y′(z) + 1

4
p2(z)y(z)− 1

2
p′(z)y(z) + p(z)y′(z)− 1

2
p2(z)y(z) + q(z)y(z) = 0,

and finally

y′′(z) +

(
q(z)− 1

4
p2(z)− 1

2
p′(z)

)
y(z) = 0.

The proof is completed.

Now taking this transformation, the equation (10) turns to

−y′′ +
4Hz−H2

4z2

(z −H)2
y = λy, h ≤ z < H, (15)

the so-called the Sturm-Liouville equation with a singularity.

Corollary 3. The motion equation of vibrations of embankments with the special shear stress
τyz = G

(
∂u
∂z + u

z−H

)
is as follows

−y′′ + q0(z)

(z −H)2
y = λy, h ≤ z < H, (16)

where q0(z) =
4Hz−H2

4z2 . Also boundary conditions are

U(y) := y′(h)− βy(h) = 0, V (y) := y(H) = 0, (17)

where β = H
2h(H−h) . So we can write a boundary value problem (16)-(17) as the problem of the

seismic response of earth dams with this stress.
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3 Application of VIM

In this section, we establish some numerical consequences and utilize the variational iteration
method (VIM) to solve the problem (16)-(17) which is a Sturm-Liouville problem (see [1, 6, 13,
14, 22]). It is well known that the variational iteration method is an effective tool to solve a wide
class of linear and nonlinear problems with a fast convergence to exact solutions.

To demonstrate the technique, we assume that

L[u(t)] +N [u(t)] = g(t),

be a differential equationwith the linear operatorL,nonlinear operatorN and continuous function
g(t).

We establish a correction function which is the basic character of VIM as

un+1(t) = un(t) +

∫ t

t0

µ{Lun(s) +Nũn(s)− g(s)}ds,

where µ is a general Lagrange multiplier that it can be identified optimally by variational theory,
un is the nth approximate solution, and ũn denotes a restricted variation, i.e., δũn = 0. In this
way, we can obtain an exact solution for linear problems only by one iteration step as regards the
Lagrange multiplier is exactly identified.

Now we would like to solve the differential equation which arises from the displacement of
the embankment in the special case by VIM. So we consider the following differential equation

−y′′ + ν

(z −H)2
y = λy, h ≤ z < H, (18)

for a real parameter ν. In the case ν = 0, this equation together with initial conditions y(h) = 1

and y′(h) = β, for β = i
√
λ has the solution e(z) = exp

(
i
√
λ(z − h)

)
. To find the approximate

analytical solution by using this method, we have the correction functional

yn+1 (z) = yn (z) +

∫ z

h

µ

{
d2yn (s)

ds2
− ν

(s−H)2
ỹn (s) + λyn (s)

}
ds, (19)

where ỹn is assumed as a restricted variation. In the following, bymaking the functional stationary

δyn+1 (z) = δyn (z) + δ

∫ z

h

µ

{
d2yn (s)

ds2
− ν

(s−H)2
ỹn (s) + λyn (s)

}
ds

= δyn (z) + µ(s)δy′n(s)|s=z − µ′(s)δy(s)|s=z

+

∫ z

h

{
d2µ(s)

ds2
+ λµ(s)

}
δyn (s) ds

= (1− µ′(z))δyn (z) + µ(z)δy′n(z)

+

∫ z

h

{
d2µ(s)

ds2
+ λµ(s)

}
δyn (s) ds,

the stationary conditions can be obtained{
d2µ(s)
ds2 + λµ(s) = 0,

µ(z) = 0, µ′(z) = 1.
(20)
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We give the Lagrange multiplier µ = 1√
λ
sin
(√

λ(z − s)
)
. So we take the VIM iteration formula

yn+1 (z) = yn (z)

+

∫ z

h

1√
λ
sin
(√

λ(z − s)
){

y′′n (s)−
ν

(s−H)2
yn (s) + λyn (s)

}
ds.

(21)

Substituting the initial approximation y0(z, λ) = exp
(
i
√
λ(z − h)

)
in (21), we have

y1 (z) = exp
(
i
√
λ(z − h)

)
−
∫ z

h

1√
λ
sin
(√

λ(z − s)
){ ν

(s−H)2
exp

(
i
√
λ(s− h)

)}
ds.

(22)

By using Mathematica, the following approximation of the solution is given

y(z) ≈ y1(z) = exp
(
i
√
λ(z − h)

)
+

ν√
λ

(
sin
(√

λ(z − h)
)

(H − h)2

+
2sin

(√
λ( z2 −

h
2 )
)
exp

(
i
√
λ
(
z
2 −

h
2

))
(
h
2 −H + z

2

)2
+
4sin

(√
λ
(
z
4 −

h
4

))
exp

(
i
√
λ
(
3z
4 −

3h
4

))
(
h
4 −H + 3z

4

)2
+
4sin

(√
λ
(
3z
4 −

3h
4

))
exp

(
i
√
λ
(
z
4 −

h
4

))
(
3h
4 −H + z

4

)2
)
.

This approximate solution is shown in Fig. 1 for h = 10, H = 100, λ = 4 and ν = 1.

Herewewant to use the suggestedmethod again to survey the problem arisen from themotion
of the embankment. To do this, consider the differential equation as follow

−y′′ + q(z)y = λy, h ≤ z < H, (23)

where q(z) = 4Hz−H2

4z2(z−H)2 . When q(z) = 0, the solution of (23) subject to the initial conditions

y(h) = 1 and y′(h) = β, for β = i
√
λ is e(z) = exp

(
i
√
λ(z − h)

)
. We take the correction functional

yn+1 (z) = yn (z) +

∫ z

h

µ

{
d2yn (s)

ds2
− 4Hs−H2

4s2(s−H)2
ỹn (s) + λyn (s)

}
ds, (24)
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where the restricted variation is assumed by ỹn. By making the functional stationary

δyn+1 (z) = δyn (z) + δ

∫ z

h

µ

{
d2yn (s)

ds2
− 4Hs−H2

4s2(s−H)2
ỹn (s) + λyn (s)

}
ds

= δyn (z) + µ(s)δy′n(s)|s=z − µ′(s)δy(s)|s=z

+

∫ z

h

{
d2µ(s)

ds2
+ λµ(s)

}
δyn (s) ds

= (1− µ′(z))δyn (z) + µ(z)δy′n(z)

+

∫ z

h

{
d2µ(s)

ds2
+ λµ(s)

}
δyn (s) ds,

we have (20). We can give the Lagrange multiplier µ = 1√
λ
sin
(√

λ(z − s)
)
. So the iteration

formula can be obtained as

yn+1 (z) = yn (z)

+

∫ z

h

1√
λ
sin
(√

λ(z − s)
){

y′′n (s)−
4Hs−H2

4s2(s−H)2
yn (s) + λyn (s)

}
ds.

(25)

Considering the initial approximation y0(z, λ) = exp
(
i
√
λ(z − h)

)
and substituting in (25),

we can write

y1 (z) = exp
(
i
√
λ(z − h)

)
−
∫ z

h

1√
λ
sin
(√

λ(z − s)
){ 4Hs−H2

4s2(s−H)2
exp

(
i
√
λ(s− h)

)}
ds.

(26)

By using again Mathematica, the following approximation of the solution is obtained

y(z) ≈ y1(z) = exp
(
i
√
λ(z − h)

)
+

1√
λ

(
(4hH −H2)sin

(√
λ(z − h)

)
4h2(H − h)2

+

(
4H
(
h
2 + z

2

)
−H2

)
sin
(√

λ
(
z
2 −

h
2

))
exp

(
i
√
λ
(
z
2 −

h
2

))
2
(
h
2 + z

2

)2 (h
2 −H + z

2

)2
+

(
4H
(
h
4 + 3z

4

)
−H2

)
sin
(√

λ
(
z
4 −

h
4

))
exp

(
i
√
λ
(
3z
4 −

3h
4

))
(
h
4 + 3z

4

)2 (h
4 −H + 3z

4

)2
+

(
4H
(
3h
4 + z

4

)
−H2

)
sin
(√

λ
(
3z
4 −

3h
4

))
exp

(
i
√
λ
(
z
4 −

h
4

))
(
3h
4 + z

4

)2 ( 3h
4 −H + z

4

)2
)
.

This approximate solution is shown in Fig. 2 for h = 10, H = 100, λ = 4.
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Figure 1: The approximate solution using h = 10, H = 100, λ = 4.

Figure 2: The approximate solution using h = 10, H = 100, λ = 4.
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4 Conclusion

In this paper, the seismic response of earth dams has been studied by the Sturm-Liouville equa-
tions. The approximate solution of this problem has been computedwith the use of the variational
iterationmethod. We took theMathematica software to compute this solution with high accuracy.
The more accurate solutions help us to know the rate of vibrations of embankments more exact.
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